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Ceramic matrix composite corrosion models
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Abstract

This paper discusses physical and empirical models for the description of corrosion processes. Physical strict models are advantageous
for simple ceramics and simple composites. In additive-containing ceramics and composites with such matrices, the transport properties
will vary with time; in these cases simple physical models alone are not adequate. The use of an empirical equation of the formx =
kl t + k′

p

√
t + klog log(t), fitted by simple multiple linear regression, is capable to describe many versions of corrosion processes, ifkl is

allowed to become negative or positive (x: scale thickness or specific mass change,t: time). The equation is recommended for complex cases,
but the variability of the corrosion function makes it often necessary to have more than one parameter of evaluation of the material to deduce
the most important engineering parameter, penetration depths.
© 2004 Elsevier Ltd. All rights reserved.
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. Introduction

Ceramic matrix composites are by definition multiphase
aterials. Every material has a specific reaction to the envi-

onment it is exposed to and therefore the behavior is bound
o be more complex, unless a component may be treated as
nert.

In this paper, we review a number of models for the de-
cription of corrosion processes in view of their usefulness
or composite evaluation.

. Models for simple mass gain or loss

We begin the discussion with models for simple one-phase
aterials. For oxidation as a special case of the corrosion of
on-oxides, the modeling is often done by assuming a simple
arabolic law. A simple parabolic law is the result of assum-

ng steady-state conditions with a constant oxygen partial
ressure in the atmosphere and at the gas–scale interface ap-
roaching zero at the scale–substrate interface. The last as-

partial pressures of oxygen calculated for the coexisten
substrate and scale material at high temperatures. An e
ple is thePO2 of approximately 10−28 bar at 1000◦C for an
equilibrium between Si and SiO2, calculated by a therm
chemical program3 or straight from the tabulated values4 of
the reaction:

Si + O2 ⇔ SiO2 (1)

This situation is a classic diffusion problem for oxyg
through a growing layer of silica. Relating the flux of the o
dant through the scaleJ to reflect the growth in scale thickne
x with time t, we derive the basic parabolic relation alre
from Fick’s first law (D: effective diffusion coefficient,c0:
oxygen concentration at the scale top = solubility):

J = dx

dt
= D

c0 − 0

x
⇒
∫

x dx =
∫

(Dc0) dt

⇒ x2 = 2kpt (2)

Incorporating the factor 2 intokp we havex2 =kpt, the

umption seems justified in view of the very low equilibrium
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simplest form of the parabolic law, which is often used in the
analysis of oxidation and corrosion data.

Deal and Grove5 showed that this analysis does not take
into account the effects of gas phase transport and chemical
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reaction rate, which must be acting and which have to be con-
trolling parameters at least in the beginning of an oxidation
process. Their detailed analysis yielded the equation

x2 + Ax = B(t + τ) (3)

in which the factorsAandB incorporate the physical transport
parameter andτ represents the shift in the time coordinate,
which allows for the presence of a pre-existing oxide scale
of thicknessxi . Numerically it was found that at long times
the behavior approached simple parabolic relations, while at
short times we have almost linear kinetics.

For practical use we can transform Eq.(3)by the definition
of parabolic and linear rate constantkp =B andkl =B/A to
derive

x2

kp
+ x

kl
− τ = t (4)

This is a useful analytical form of the Deal and Grove re-
lationship, because nowτ, 1/kp and 1/kl may be obtained
from a simple multiple linear regression. The action of the
parameters is illustrated inFig. 1, where an arbitrarily chosen
value of 0.5�m2/cm is linked to widely varying values ofkl .
It is obvious fromFig. 1 that kl values smaller thankp do
cause growth retardation and significant linearization of the
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Particulate composites, in which the reinforcing parti-
cles are oxidized within an oxide matrix, were addressed by
Mogilevsky and Zangvil.1,7 Their analysis introduced an ef-
fective grain size of the particlesR and the valuex is now
the propagation of the oxidation frontz divided byR. The
parametersA andB in their equation contain permeabilities,
oxygen partial pressures and particle fraction and are thus not
identical toA andB of Deal and Grove,5 but the form is very
similar to Eq.(3):

x + Ax(1+bn) = Bt

R2
(5)

Eq. (5) contains the parameterbn, which adjusts for non-
molecular diffusion through the oxide matrix.

For the purpose of this paper, it is only necessary to ob-
serve the change of the function of corrosion front with time
in differing situations. This is done inFig. 2, where the likely
values forbn act on a set of fixed arbitrarily chosenA= 0.1
andB= 0.5 parameters withR= 1. A value ofbn = 1 yields a
quadratic relation similar to Deal and Grove’s Eq.(3); chang-
ing bn to lower plausible values steepens the function.

It should be noted that the deviation from parabolic
kinetics with decreasingbn is towards linear behavior and
increasing absolutex and z values, i.e. acceleration of the
corrosion process. This is very different from the processes
d tar-
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urve, while highkl values induce an almost perfect parab
ehavior. The higherkl is the more it is insignificant. Phys
ally this makes sense because the chemical reaction ra
o be high to allow the scale-substrate interface to get tow
quilibrium with very little oxygen.

The negative counterpart of this relation, the loss of m
ial to the atmosphere in a composite, has been investi
ith the aid of Eq.(4) by Eckel et al.6 The modeled com
osite was a reactive carbon fiber within an inert matri
lumina. In this caseτ becomes 0 and the parabolic rate c
tant is predictable from known gas kinetics. The diamet
he oxidized carbon fiber is decisive for this situation: sm
bers at relatively low temperatures had akl small enough t
ave a significant effect with process retardation and kin
ecoming linear.

Fig. 1. Influence of varyingkl for a fixed value ofkp = 0.5�m2/cm.
s

escribed inFig. 1, where a linearization meant process re
ation.

The corrosion of ceramics and glasses by liquids is o
odeled empirically.8 The problem encountered is that t
rocesses, the leaching of components of a glass phas

he complete dissolution of a glass phase, occur simul
usly at a given time. Dissolution in a steady-state situa

s usually limited by the dissolution (=reaction) rate, wh
hould induce a linear process with time. Leaching prod
residue and diffusion through this growing residue can

ome rate controlling. When both rates operate at compa
elocities, the dissolution is reducing the residue thickn
ence, a deviation from parabolic kinetics occurs. The e

ig. 2. Influence of varyingbn in Eq. (5) for fixed values ofA andB from
he model of Ref. 1.
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Fig. 3. Effect of increasingk∗
l values on an arbitrary chosen value ofk∗

p in
Eq.(6).

tion, which is often successful in describing this behavior,
is

x = k∗
l t + k∗

p

√
t (6)

Eq.(6) looks very similar to Eq.(4), but this is deceptive. In
Eq.(6) the dependent variable of fitting isx, while in Eq.(4)
it is t. In Eq.(6)any increase ink∗

l will automatically increase
the total ofx, i.e. it accelerates the process (Fig. 3), while the
opposite is observed in Eq.(4) (Fig. 1). The deviation from
simple parabolic kinetics is here more akin to the case of Eq.
(5).

3. Models for combined mass gain and loss

In composites we often have the problem of simultaneous
processes acting in differing directions. An example is the
evaporation of a scale material, which is formed on oxidation
of a substrate. Thus, growth and recession are the opposing
factors in terms of a scale thickness and mass gain and loss
in terms of the total mass function.

It has been shown that the so called Tedmon equation is
capable of modeling this behavior.9–11 The two forms of the
Tedmon equation for scale thickness and mass change are

t

′ [ ′ ( ′ )]

a

t
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f

d ation
o totic
b ss

Fig. 4. Effect of increasingkl values on an arbitrary chosen value ofk∗
p in

Eqs.(7) (left) and(8) (right).

retardation, but at long times or higherkl it turns into near
linear mass loss. This behavior was termed “para-linear”10

and is physically well constrained.
As examples for fiber-reinforced ceramics we have in

SiC/C and SiC/BN systems the recession of fibers in com-
bination with SiC oxidation. The formation of annular holes
around fibers from the active oxidation of their interface ma-
terials is retarded and eventually stopped by silica growth,
which seals the pathway for oxygen. Models for these cases
have been presented by.12,13The latter calculates the sealing
time by an application of Eq.(3), the former via numerical
integration of differential equations.

We have presented a modeling scheme, which is an exten-
sion of the empirical model of Eq.(6):14

x = k′
l t + k′

p

√
t + klog log(t) (9)

In this equation, there is a third term (klog). The physical basis
behind this term is the behavior of materials with asymptotic
passivation. If a corrosion product is completely blocking its
substrate from further attack, we have a simple reduction in
effective exposed area approaching 100%. Mathematically
this is a retardation function with a constant scaled by the
logarithm of time.

One or two constants in Eq.(9)can become zero for a given
data set. In these cases Eq.(9) reduces to simpler forms of
c
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c
p

4

the
s d are
c am-
= kp

2(k′
l )

2
−2klx

k′
p

− ln 1 − 2klx

k′
p

(7)

nd

=
[

α2kp

2k2
l

[
−2kl�w1

αkp
− ln

(
1−2kl�w1

αkp

)]]
−∆w2

βkl
(8)

n those equationsα andβ are stoichiometric factors, whic
ccount for the mass balance of the appropriate reaction

orm of the functions with varyingkl is illustrated inFig. 4.
In Fig. 4it can be seen that now an increase inkl implies a

ifferent behavior: for scale thickness it means a retard
f process velocity, but this time approaching an asymp
ehavior. Mass change with smallkl is also seen as a proce
orrosion equations.
In view of the reality of corrosion processes with combi

ass gain and loss, Eq.(9) may be used including negati
alues forkl . With this change to the original proposal14 the
unction is very variable in fitting corrosion processes. T
al variations are shown inFig. 5.

By varying the parameters it is possible to describe
eleration or retardation of the process by Eq.(9), including
aralinear characteristics.

. Discussion

The physical models reviewed above work well for
imple systems for which they have been developed an
ertainly of great value to find the physical border par
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Fig. 5. Effect of increasingk′
l values on an arbitrary chosen set of values of

k′
p andklog in Eq.(9).

eter for the best use of these materials under those condi-
tions. However, if we deal with ceramic matrix composites
of higher complexity they are not likely to give reliable an-
swers.

Most ceramics based on Si3N4 and an increasing num-
ber of liquid phase sintered SiC ceramics contain additives,
which change the oxidation behavior drastically. There is a
great wealth of literature data, which is collected in text-
books on the simple base ceramics and illustrates the decisive
influence.15–18

However, from those textbook data it is also clear that
for many cases the behavior is distinctly non-parabolic. The
physical reason behind this is not just found in the deduction
of Eq. (3) by Ref. 5. The main reason is the change of prop-
erties of scales with time. In additive-containing systems we
have a continuous change of chemistry and crystallization
state with time and we may additionally find self-destruction
of the protective character of a scale with time. None of the
physical models described above is capable of handling these
processes.

In earlier papers19,20 we have attempted to model some
features on a physical basis. These studies showed how the
changes introduced by crystallization and scale chemistry
change influence the function of mass change or scale growth
with time. The complex mathematical solution gave curves,
w bol-
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c
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s
o
c de-
c

-
i on

Fig. 6. Long-time experimental data of a Si3N4 ceramic (M of Ref. 2 and
fits by Eqs.(4) and (9)).

AlN–SiC–ZrB2 composites at high temperature (this volume)
and shows the strong deviation from parabolic behavior.

There have been other attempts to model non-parabolic
behavior. In particular, Nygren and coworkers21,22 have de-
veloped models which include an arctan-function of time.
This was successful for a number of SiAlON ceramics and
allowed them to model retardation problems. However, with
more data available, more parameters were added to their
equation, because in those ceramics linearization can also
occur. A later version was then23

x = a arctan
√

b(t + q) + c
√

t + q + kl t (10)

Eq. (10) has similarities to Eq.(9) by consisting of terms
for linear and parabolic terms plus a retardation term. Eq.
(10)has more constants (a, b, c, q andkl ) to be fitted, which
makes the fitting procedure more cumbersome. Ogbuji24 in-
vestigated the problem of non-parabolic oxidation of SiC and
found that an increasing number of fit parameters did not help
to get a better agreement with the data and that Eq.(9) was
the most consistently useful approach.

In particulate composites with a matrix containing sinter-
ing additives, such as Si3N4–TiN composites, the situation
does not become simpler. On top of all the complications

F l.,
t

hich showed both the possibility of deviation from para
city towards a linear acceleration as well as towards as
otic retardation, because the effective diffusion coefficie
hanging with time.

Eq. (9) is capable of reproducing these features.Fig. 6
hows that long-time experiments on silicon nitride ceram2

o deviate from a simple parabolic behavior and that
uch better described by Eq.(9) than by Eq.(4). This not

urprising, because the model according to Eq.(4) allows
nly for a time shift to reflect an initial first scale. Eq.(9)
orrectly describes the early relative fast period and the
eleration process.

A recent example for the application of Eq.(9) to compos
tes is shown inFig. 7. The example comes from a paper
ig. 7. Application of Eq.(9) to AlN–SiC–ZrB2 composites (Brach et a
his volume).
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discussed above for the matrix ceramic there is an additional
oxidation of the reinforcing phase, in this case to yield TiO2,
and an initial amount of this oxide present in the starting ma-
terial. It is highly unlikely that TiO2 is not interacting with
the oxides of the matrix system and the newly formed ox-
ides from the matrix oxidation, because there is a solubility
for it. TiO2 is also a known opacifier, i.e. an agent to induce
crystallization of silicate glasses. Therefore, it cannot be ex-
pected that the assumption of constant diffusion coefficients,
which is the base for all the physical models, holds for such
composites.

Even stronger effects are expected for composites with
second phases, which become volatile upon oxidation. Ex-
amples are the boride reinforcement systems. Certainly the
paralinear behavior of oxide formation and evaporation can
be handled by physically strict models such as Eqs.(7) and
(8). But in a reactive matrix with silicate glass and/or borate
formation the diffusion coefficients must change with time
and temperature. Examples for strongly non-parabolic cor-
rosion – both in oxidation as well as in liquid corrosion – can
be found in this volume.

As long as such complex changes cannot be treated ad-
equately in a strict physical model, their use is no real ad-
vantage over empirical models in those systems. It is thus
concluded that Eq.(9) is a simple and robust empirical ap-
p seful
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Allowing the linear term in Eq.(9) to become negative it
handles a great variety of differing mechanisms and processes
and is the preferred tool also for composite corrosion.
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